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Abstract 
Recent advances in modeling languages have made it feasible to formally specify and 
analyze the behavior of large system components. Synchronous data flow languages, 
such as Lustre, SCR, and RSML-e are particularly well suited to this task, and commercial 
versions of these tools such as SCADE and Simulink are growing in popularity among 
designers of safety critical systems, largely due to their ability to automatically generate 
code from the models. At the same time, advances in formal analysis tools have made it 
practical to formally verify important properties of these models to ensure that design 
defects are identified and corrected early in the lifecycle. This report describes how these 
tools have been applied to the ADGS-2100 Adaptive Display and Guidance Window 
Manager being developed by Rockwell Collins Inc. The Window Manager acts as 
“switchboard” between display applications and physical displays. It is also responsible 
for ensuring that critical information is displayed to pilots even in the presence of 
application and hardware failures.   
 
In this effort, the majority of the functional behavior of the window manager, with over 
16,000 primitive Simulink blocks organized into over 4,000 subsystem instances, was 
verified against the high-level requirements expressed as 563 temporal logic properties. 
As a result, 98 errors in the high-level requirements and Simulink models were found and 
corrected.  This work demonstrates how formal methods can be easily and cost-
efficiently used to remove defects early in the design cycle. 
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1. Introduction 
Recent advances in modeling languages have made it feasible to formally specify and 
analyze the behavior of large system components. Synchronous data flow languages, 
such as Esterel [2], Lustre [3], [16], SCR [18], and RSML-e [36] are particularly well 
suited to this task, and commercial versions of these tools such as SCADE [12] and 
Simulink [10] are growing in popularity among designers of safety critical systems, 
largely due to their ability to automatically generate code from the models. At the same 
time, advances in formal analysis tools have made it practical to formally verify 
important properties of these models to ensure that design defects are identified and 
corrected early in the lifecycle [4], [5], [6], [20], [34], [35]. 
 
Rockwell Collins is currently designing heads-down and heads-up displays and display 
management software for next-generation commercial aircraft.  An important part of this 
system is ensuring that data from different displays applications is routed to the correct 
display, and that critical applications are displayed even in the event of display or 
computing resource failures.  The Window Manager (WM) is responsible for this 
“switchboard” functionality, routing applications to displays in a flexible way and 
handling reversion in the case of component failures.  
 
In this report, we describe what we believe is the first successful integration of formal 
analysis into the design cycle of a large-scale critical commercial avionics software 
application.  This effort analyzed the majority of the WM application to a very high 
degree of rigor and completeness.  The only portions of the WM application that were 
excluded were those that were considered of lower criticality and those that dealt with the 
hardware-software interface.  Our success was predicated on understanding the needs and 
development processes of the systems and software engineers who were building the WM 
application.  To meet these needs, we had to solve several challenges, including:  

• Determining how to map software requirements into formal properties 

• Creating translators that would allow commercial modeling tools (such as 
Simulink [10], [22]) to be quickly and automatically analyzed by different formal 
analysis tools 

• Creating tools that allow analysis results (counterexamples) to be easily 
understood by the analysts and product engineers 

• Defining methods for partitioning the application of interest into subsystems that 
can be analyzed individually 

• Creating a verification process to ensure that: 1) the analysis results are sound, 2) 
all formal properties are traceable to software requirements, and 3) all 
requirements of interest are verified through one or more formal properties 

• Iterating our verification process with the goal of faster turn-around between 
development and analysis to create a more efficient and higher quality process. 
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This report is a summary of how the challenges were met and overcome in the course of 
analyzing the WM application. 
 
The remainder of this report is organized as follows.  Section 2 provides background 
information, including an brief overview of a simplified WM and descriptions of the 
modeling and analysis tools used in the project.  Section 2.3 describes how the models 
are translated into the analysis tools for verification.  Section 3 describes the process that 
was used to perform the analysis.  Section 4 discusses how these techniques were applied 
to the WM and our analysis results. Finally, Section 5 provides concluding remarks and 
directions for further work. 

2. Background 
This section provides general background information, including a brief overview of a 
simplified Window Manager and descriptions of the modeling and verification tools used 
in the project. 

2.1. Overview of the Window Manager Application 
In a modern aircraft, the primary way that aircraft status information is displayed to pilots 
is through computerized display panels, such as the ones shown in Figure 1.  These 
display panels are designed to replace the dozens of mechanical switches and dials found 
in earlier aircraft and to present a unified and straightforward interface to critical flight 
information.  The display panels are configurable so as to allow pilots to toggle between 
several different kinds of information, including navigational maps, aircraft system 
status, flight checklists, etc.  However, some information is considered critically 
important and should always be displayed. 
 

 
Figure 1: Example Pilot Display Panels 
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A simplified architecture for such a system is presented in Figure 2.  In this figure, two 
displays provide information to the pilot and copilot.  These displays are connected to 
two redundant computing resources via a high-availability bus.  Each computing resource 
contains several display applications and a display window manager, and is capable of 
managing both displays.  Each display has a “preferred” computing resource that it uses 
if both resources are available.  The user can interact with the displays through the use of 
a keypad and a trackball (not shown in the architectural figure).  The trackball controls a 
cursor that is visible on the displays.  The cursor can move between displays in response 
to a few different user actions 
 
  
 

 
Figure 2: Simplified Displays Architecture 

 
The Window Manager (WM) determines which applications should be displayed and the 
location of the cursor on the displays. It also has several responsibilities related to routing 
information to the displays.  First, the WM must update which applications are being 
displayed in response to user selections of display applications.  Second, the WM must 
handle reversion in case of hardware or application failures.  If a display fails, the WM 
decides which information is most critical and moves this information to the remaining 
display.  Another responsibility has to do with cursor management: some display 
applications support the cursor while others do not.  It is the responsibility of the WM to 
ensure that the cursor does not appear on a display that contains an application that does 
not support the cursor.  In the event of reversion, the WM must ensure that the cursor is 
not tasked to a dead display. 
 

PFD EICAS MAP 

…
PFD EICAS MAP 

…

WM WM 

Window Manager 
Display Application 
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The WM is essential to the safe flight of an airplane.  If a WM contains logic errors, it is 
possible that critical flight information will be unavailable to the flight crew.   
 
The basic functionality of the WM application is similar to this example.  However, the 
real WM application is much more complex and involves more displays, more computing 
resources, more architectural layers, more redundancy, and some additional functions that 
are not found in this example. 

2.2. Modeling and Verification Tools 
This section provides an overview of the modeling and verification tools used in the 
verification of the WM system. The WM was modeled in Simulink® and analyzed using 
the NuSMV model checker. Reactis® was used in conjunction with software developed 
by Rockwell Collins Inc (RCI) and the University of Minnesota to translate the Simulink 
models into NuSMV. The PVS and SAL tools from SRI International were also 
investigated as possible analysis tools. 
  

2.2.1. Simulink 
Simulink® [10] [22], sold by The Mathworks, is a popular platform for the modeling and 
simulation of dynamic systems. It provides an interactive graphical environment and a 
customizable set of block libraries that can be used to design, simulate, debug, 
implement, and test reactive systems. Users assemble a system specification by dragging 
and dropping blocks onto a pallet and connecting the outputs of one block to the inputs of 
another block. Blocks can be composed hierarchically from simpler blocks, allowing 
designers to organize complex system designs. New blocks can be defined by the 
developer and added to a reusable library. Blocks can also be parameterized. Control 
logic for representing system states and state transitions can be modeled with the 
integrated StateFlow® add-on. Simulink and StateFlow are both integrated with the 
MATLAB® environment, also marketed by The Mathworks, providing access to several 
additional tools for algorithm development, data analysis, data visualization, and 
numerical computation. Executable code can generated from a Simulink model using the 
Real-Time Workshop® add-on. An advantage of Simulink is that it can be simulated with 
fixed or variable-step solvers, allowing both the control system and the plant model (for 
example, the airframe) to be modeled within the same framework. 

2.2.2. SCADE 
SCADE [12] is an environment for the development of safety-critical systems similar to 
Simulink. Originally developed for the design of aircraft systems, similar but separate 
versions are now marketed by Esterel Technologies for the automotive industry (SCADE 
Drive™) and the avionics industry (SCADE Suite™). SCADE also provides an 
interactive graphical environment that allows users to assemble system specifications by 
dragging and dropping blocks onto a pallet and connecting the outputs of one block to the 
inputs of another. Control logic for representing system states and state transitions can be 
modeled with the integrated Safe State Machine© (SSM) add-on. Since the SCADE tools 
were explicitly created for the development safety-critical software and hardware, 
SCADE supports only fixed step simulation. For the same reason, the features and blocks 
supported by SCADE and SSM are restricted to those with an unambiguous mathematical 
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representation. An advantage of SCADE is that its models are translated into the Lustre 
language, a synchronous data flow language with a precise formal semantics. C source 
code can be generated from SCADE using the KCG™ code generator which has been 
qualified as a Level A software development tool in accordance with DO178B. The 
SCADE Suite also includes a gateway that can import Simulink models and a model 
checker called Design Verifier. 

2.2.3. Reactis 
Reactis [29] is an automated test-generation and property verification tool for 
Simulink/StateFlow models developed by Reactive Systems, Inc.  It uses random and 
heuristic search to try to exercise the behavior of models up to a defined level of 
structural coverage.  Reactis supports several different coverage metrics including state, 
condition, branch, boundary, and MC/DC-level coverage [7].  The result of the search 
process is a suite of tests which can be used both for structural testing and validation of 
the model.   
 
Reactis allows properties to be specified either using a proprietary Reactis textual 
notation or as additional StateFlow machines, and will check whether all tests within a 
test suite satisfy the properties of interest.  Because Reactis uses random, rather than 
exhaustive, search, it can be used to generate tests and attempt to verify properties of very 
large models that cannot be analyzed by exhaustive search tools such as model checkers.  
On the other hand, it is not guaranteed that Reactis will generate all tests necessary to 
reach a level of structural coverage.  Furthermore, the generated tests are insufficient to 
prove that a given property always holds of a model.   

2.2.4. NuSMV 
NuSMV [19] is a symbolic model checker developed as a joint project between the 
Formal Methods group in the Automated Reasoning System Division at the Instituto 
Trintino di Cultura (ITC) - Center for Scientific and Technological Research (IRST), the 
Mechanized Reasoning Groups at the University of Genova and the University of Trento 
in Italy, and the Model Checking group at Carnegie Mellon University in the United 
States. NuSMV is a re-implementation and extension of SMV, the first model checker 
based on Binary Decision Diagrams (BDDs). NuSMV has been designed to be an open 
architecture for model checking that can be reliably used for the verification of industrial 
designs, as a core for custom verification tools, as a test bed for formal verification 
techniques, and applied to other research areas. Properties to be verified in NuSMV are 
specified using either Computation Tree Logic (CTL) or Linear Time logic (LTL).  
 
The advantage of using a model checker such as NuSMV is that it will check all possible 
combinations of inputs and state to determine if a property is true. We have used the 
NuSMV model checker to verify properties of models with over 10120 reachable states. 

2.2.5. PVS 
PVS [31] is a theorem prover that has been developed at SRI International's Computer 
Science Laboratory. In comparison to other widely used verification systems such as 
HOL and ACL2, the distinguishing characteristic of PVS is that it supports a highly 
expressive specification language with an interactive theorem prover in which most of the 
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lower-level proof steps are automated. The system consists of a specification language, a 
parser, a type checker, and an interactive proof checker. The PVS specification language 
is based on higher-order logic with a richly expressive type system so that a number of 
semantic errors in a specification can be caught during type checking. The PVS prover 
consists of a powerful collection of inference steps that can be used to reduce a proof goal 
to simpler subgoals that can be discharged automatically by the primitive proof steps of 
the prover. The primitive proof steps involve, among other things, the use of arithmetic 
and equality decision procedures, automatic rewriting, and BDD-based Boolean 
simplification. 

2.2.6. SAL 
SAL (Symbolic Analysis Laboratory) [32] is a framework for combining different tools 
to analyze sequential and concurrent systems. The heart of SAL is a language, developed 
in collaboration with Stanford, Berkeley, and Verimag, for specifying concurrent systems 
in a compositional way. The SAL framework contains tools for abstraction, invariant 
generation, program analysis (such as slicing), theorem proving, and model checking.  
These tools can be used to separate different analysis concerns and calculate properties 
(i.e., perform symbolic analysis) of sequential and concurrent systems. SAL includes an 
explicit-state model checker, a BDD-based symbolic model checker, a SAT-based 
bounded model checker, and a SAT-based infinite bounded model checker which can 
symbolically analyze systems containing real numbers.  SAL can also be used as an 
interface to the PVS theorem prover. 
 

2.3. Translation of Simulink into Analysis Tools 
The translation of Simulink models into NuSMV or other analysis tools requires several 
steps. However, these are automated and normally completed without great difficulty. 
The translation process is illustrated in Figure 3. 
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Figure 3 – Translator Framework 

 
Models are first created using MATLAB Simulink and/or StateFlow. These models then 
are translated into the Lustre formal specification language using one of two tool chains. 
In our original tool chain, Simulink/StateFlow models were imported into the SCADE 
Suite using the Simulink Gateway provided by Esterel Technologies. SCADE Suite is 
then used to translate the models into Lustre. In a recent update to our tool chain, the 
Simulink/StateFlow models are imported into Reactis and a Lustre file is generated using 
a translator developed by Rockwell Collins and the University of Minnesota (hereafter 
RCI-UMN).1   From Lustre, the models are translated into NuSMV, PVS, or SAL using 
translators developed by RCI-UMN. The Lustre models can also be imported into Design 
Verifier, a model checker available in SCADE Suite. 
 
The RCI-UMN translators produce highly optimized models most appropriate for the 
target language. For example, when translating to NuSMV, the translator produces a 
specification that is difficult for a human to read, but very efficient for proving properties. 
When translating to PVS, the resulting specification is optimized for readability and to 
support the development of proofs in PVS.  
 
Since the WM model consists primarily of Boolean and enumerated types, it is very 
efficient to verify properties about the mode logic using a BDD-based model checker 
such as NuSMV. NuSMV, SAL, PVS, and Design Verifier were also investigated and 
found to be acceptable alternatives. However, due to the speed and ease of use of 
NuSMV, the bulk of the WM verification was done using it. A more detailed comparison 
of the pros and cons of verification using NuSMV and PVS can be found in [25]. 
                                                 
1 For analysis of the DWM, the Reactis tool chain was preferred as Esterel Technologies Simulink Gateway 
did not yet support release R14 of Simulink, introducing an additional step to convert Simulink R14 models 
into R13 when using the Simulink Gateway.  
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3. Analyzing a Large Software Model 
The WM is a large application and analyzing the complete model is beyond the capability 
of current automated tools, even with the optimized translation tools described in Section 
2.3.  Therefore, we adopted several techniques to partition the model into analyzable 
subsystems, and use additional manual reasoning to ensure that the subsystem-level 
reasoning ensures that the system as a whole maintains critical safety properties.  This 
section describes how this partitioning occurs and what steps are taken to ensure that the 
resulting analysis is sound.  An overview of this process is shown in Figure 4.   
 
 

Subsystem LevelSystem Level

System 
Requirements

System 
Requirements

System 
Simulink 

Model

System 
Simulink 

Model

Subsystem k
Model + 
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System 
Environmental 
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…

…

 
Figure 4: Overview of Analysis Process 

 
In Figure 4, the circles correspond to processes and the document icons correspond to the 
artifacts generated by these processes.  The create analysis subsystems step splits the 
model into different subsystems and assigns a set of system requirements that will be 
analyzed on the subsystem.  After the subsystems have been created, then the analyze 
subsystem step is performed on each of the subsystems.  The result of the analysis process 
may require changes to the subsystem under analysis, to another subsystem, or to the 
system level requirements or environmental assumptions.     
 
Although not shown in Figure 4, the whole process is iterative as the system evolves.  We 
believe that significant benefits can be achieved by analyzing early iterations of systems, 
even when both requirements and models are incomplete.  As the system evolves, the 
analysis subsystem boundaries may be re-drawn and additional properties are added. 
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3.1. Formal Model of a Toy Window Manager 
To illustrate the different steps in the analysis of the WM application without introducing 
the complexity of the full WM, we have created a toy WM Simulink model that 
implements some of the requirements described in Section 2.1.  To protect proprietary 
Rockwell Collins data, this example is purposely different from the real WM application, 
but is sufficiently representative to illustrate many of the concepts and procedures 
necessary to analyze a much larger model.   
 

 
Figure 5: Toy WM application 

 
The two subsystems in the application are DU_APPLICATION_SELECTION and 
CURSOR_PLACEMENT, which manage mapping applications to display units and the 
location of the cursor, respectively.  The inputs to the model are: 

• Left/Right DU Available: These inputs describe whether or not the left (right) 
display unit is available. 

• Left/Right Switchbanks: The pilot and copilot have three-way switches to select 
which application to display on a display unit.  The three switch positions are 
EICAS, PFD, and MAP.  Depending on the switch position, one of the left (right) 
switch bank inputs is true and the other left (right) switch bank inputs are false.  
When the switch is being turned, it is also possible that all of the switch bank 
inputs are false. 

• Left/Right Cursor Manual Requests: The pilot or copilot can manually request 
that the display cursor be moved to the left display or the right display using two 
buttons.  In these instances, the left or right manual request inputs are true. 

 
The outputs of the model are: 
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• Left/Right DU Application: These outputs are enumerations: {0 = BLANK, 1 = 
EICAS, 2 = PFD, 3 = MAP} that describe what is to be displayed on a DU. 

• Cursor Location: This output is an enumeration {0 = No Cursor, 1 = Left DU, 2 
= Right DU} that describes the location of the display cursor. 

 
 

3.2. Creating Analysis Partitions 
The first step in analyzing the model is to create analysis partitions that can be 
automatically analyzed.  An visual overview of this process is shown in Figure 6. 
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Figure 6: Creating Analysis Partitions 

3.2.1. Group Related Requirements  
To create analysis partitions, we first try to group system requirements into sets that can 
be checked against a portion of the system Simulink model.  In our experience with the 
WM and the FCS 5000 (explained in [24]), it is usually the case that the properties 
naturally partition into sets that are functionally related to one another, and that the truth 
or falsehood of these property sets can be determined by examining a relatively small 
portion of the entire Simulink model.   
 
However, there are some system-level properties that span most or all of the entire model.  
In this case, we try to split the property of interest into sub-properties that can be assigned 
to specific subsystems, and whose truth implies the truth of the larger property.  We defer 
this process until after we have decomposed the model into analysis subsystems (Section 
3.2.2).  At that point, we can attempt to factor the property into sub-properties that are 
parceled out to the subsystems. 
 
For our running toy WM example, we would like to check the following requirements:  
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Requirement 1: If a DU is available, then it shall display some application. 
Requirement 2: If a DU is unavailable, then it shall not attempt to display any 
application. 
Requirement 3: The cursor shall not be displayed on a DU that is unavailable. 
Requirement 4: The cursor shall not be displayed on a DU whose application is not 
MAP. 
Requirement 5: When the MAP application is selected for a side, then the cursor shall 
move to that side. 
Requirement 6: When the EICAS button is pressed, the display application shall be 
EICAS. 
Requirement 7: When the PFD button is pressed, the display application shall be PFD. 
Requirement 8: When the MAP button is pressed, the display application shall be MAP. 

3.2.2. Decompose Model into Analysis Subsystems 
After grouping the properties, we carve up the system model into reasonably sized 
analysis models that are sufficient to check one or more of the requirements groups.  We 
would like to make each subsystem small enough (currently < 1050 states) that it is 
straightforward to analyze using our BDD-based model checking tools.  If a subsystem 
for a set of safety properties is too large to be comfortably analyzed, we use some 
additional techniques described in Section 3.4.1 to try to reduce it further.  An example of 
this partitioning for the toy WM application of Section 3.1 is shown in Figure 7, in which 
the heavy lines indicate the boundaries of each analysis partition. 
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Figure 7: Toy WM application with subsystem boundaries 

 
In the Toy Window Manager, the set of safety properties to be verified are clustered 
around the two areas of the model. The first set determines selection of an application to 
display on each display unit (requirements 1, 2, 6, 7, and 8).  This set can be analyzed by 
examining the upper partition of the model, shown in solid blue.  The second set 
determines where to locate the cursor (requirements 4 and 5).  This set can be analyzed 
by examining the lower partition of the model shown in dashed red.   
 
The remaining requirement (requirement 3) spans both subsystems and will have to be 
split into requirements over the subsystems that together entail the original requirement.  
We will describe how this is accomplished during formalization of requirements 
(Sections 3.2.3 and 3.2.4). 
 
If the original Simulink system model is properly architected, then these analysis models 
can be generated with very little effort.  In Simulink, it is possible to split an application 
into libraries that can be loaded into several models.  As long as the subsystems to be 
analyzed are contained in libraries, we can very easily create new top-level models 
containing the subsystems.  Then, as long as the subsystem interfaces remain stable, the 
libraries can evolve without touching the analysis models.     
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3.2.3. Formalizing Safety Requirements into Properties 
The next step in analyzing the model involves formalizing the functional and safety 
requirements into CTL properties.  For a synchronous system where the requirements are 
specified as “shall” statements over system inputs and outputs, this process is relatively 
straightforward2.  In [24], [25], and [35], we described the process of translating these 
informal statements into safety properties in more detail.   
 
The system requirements document is not the only source of properties to be analyzed.  
Properties also emerge from discussions with developers about the functionality of 
different subsystems, or even from a careful review of a particular implementation detail 
of the Simulink model.  In some cases, these properties can be thought of as validity 
checks for particular implementation choices, but on occasion they lead to additions to 
the system requirements document.  
 
For example, in the Toy WM model, the LEFT_DU_APPLICATION and RIGHT_DU_APPLICATION 
outputs are implemented as integers, but they are supposed to act like enumerations. 
Therefore, they should always be in the range 0 (BLANK) to 3 (MAP).  Otherwise, the 
output is out-of-range.  This aspect of the implementation can be easily formalized and 
checked.    
 
Most of the requirements in the WM (and all of the Toy WM requirements) fall into two 
CTL templates.  The first is simply a constraint that must be maintained by all reachable 
states.  For example, the requirement: 

If a DU is available, then it shall display some application 
 
can be translated into two CTL properties (one for each side) as follows:  
 

AG(LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION != BLANK ) 
 AG(RIGHT_DU_AVAILABLE -> RIGHT_DU_APPLICATION != BLANK ) 
 
The AG operator states that the property must hold for all globally reachable states, and  
-> is the implication operator,  The formal property for the left side can be paraphrased:   
 

In all reachable states, if the left DU is available, then its application shall 
not be blank. 

 
The second template is a constraint over a reachable system state and all possible next 
states.  This template is required when we are interested in observing the behavior of the 
system at the moment some change occurs.  For example, in the requirement: 
 

When the MAP application is selected for a side, then the cursor shall 
move to that side. 

 
                                                 
2 Occasionally, internal variables within the analysis model are used to specify properties, but this is 
discouraged, because in this case the correctness of the analysis hinges on whether the internal variable was 
correctly computed.  If internal variables are used, then additional properties must be developed and 
specified to ensure that the internal variable is correctly computed. 
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we are interested in the moment when the MAP application is selected..  This 
requirement can be translated into CTL (for the left side) as: 
 

AG( LEFT_DU_APPLICATION != MAP ->  
AX( LEFT_DU_APPLICATION = MAP ->  

CURSOR_LOCATION = LEFT_DU ) ) 

 
where the AX operator encloses a property that must hold in all next states.  Given these 
operator definitions, the property can be paraphrased:  
 

In any state in which LEFT_DU_APPLICATION is not equal to MAP, 
then in any next state in which LEFT_DU_APPLICATION is equal to 
MAP, the CURSOR_LOCATION must be LEFT_DU.   
 

In order to define ‘selection’, we have to describe the change in state of 
LEFT_DU_APPLICATION.  The AX operator provides this ability.   
 
Given the system inputs described in Figure 5, we can formalize the Toy WM 
requirements in CTL as shown in table Table 1.    Most of the properties in the full WM 
follow these CTL forms, but occasionally additional CTL operators are used.  For a 
complete introduction to CTL and LTL, see [9]. 
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Requirement: CTL Properties: 
1: If a DU is available, 

then it shall display some 
application 

AG(LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION != BLANK )  
 
AG(RIGHT_DU_AVAILABLE -> RIGHT_DU_APPLICATION != BLANK ) 

2: If a DU is unavailable, 
then it shall not attempt 

to display any 
application 

AG( !LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION = BLANK )  
 
AG( !RIGHT_DU_AVAILABLE -> RIGHT_DU_APPLICATION = BLANK ) 

3: The cursor will not be 
displayed on a DU that is 

unavailable 

AG( !LEFT_DU_AVAILABLE -> CURSOR_LOCATION != LEFT_DU ) 
 
AG( !RIGHT_DU_AVAILABLE -> CURSOR_LOCATION != RIGHT_DU ) 

4. The cursor shall not be 
displayed on a DU 

whose application is not 
MAP 

AG( LEFT_DU_APPLICATION != MAP -> CURSOR_LOCATION != 
LEFT_DU)) 
 
AG(RIGHT_DU_APPLICATION != MAP -> CURSOR_LOCATION != 
RIGHT_DU) 

5. When the MAP 
application is selected for 

a side, then the cursor 
shall move to that side 

AG( LEFT_DU_APPLICATION != MAP -> AX( LEFT_DU_APPLICATION = 
MAP -> CURSOR_LOCATION = LEFT_DU ) ) 
 
AG( RIGHT_DU_APPLICATION != MAP -> AX( RIGHT_DU_APPLICATION = 
MAP -> CURSOR_LOCATION = RIGHT_DU ) ) 

6.  When the EICAS 
button is pressed 

(SELECT_EICAS), 
EICAS shall be the 
display application 

AG( LEFT_SELECT_EICAS -> LEFT_DU_APPLICATION = EICAS ) 
 
AG( RIGHT_SELECT_EICAS -> RIGHT_DU_APPLICATION = EICAS ) 
 

7.  When the PFD button 
is pressed 

(SELECT_PFD), PFD 
shall be the display 

application 

AG( LEFT_SELECT_PFD -> LEFT_DU_APPLICATION = PFD ) 
 
AG( RIGHT_SELECT_PFD -> RIGHT_DU_APPLICATION = PFD ) 
 

8.  When the MAP 
button is pressed 

(SELECT_MAP), MAP 
shall be the display 

application 

AG( LEFT_SELECT_MAP -> LEFT_DU_APPLICATION = MAP ) 
 
AG( RIGHT_SELECT_MAP -> RIGHT_DU_APPLICATION = MAP ) 

Each 
DU_APPLICATION 

variable shall always be 
assigned a value between 

0 and 3. 

AG( LEFT_DU_APPLICATION <= 3 & LEFT_DU_APPLICATION >= 0 ) 
 
AG( RIGHT_DU_APPLICATION <= 3 & RIGHT_DU_APPLICATION >= 0 ) 

Table 1 : Formalizing Written Requirements 

3.2.4. Factoring System-Level Properties 
There are some system-level properties that span most or all of the model.  In this case, 
we try to split the property of interest into sub-properties that can be assigned to specific 
subsystems and whose truth imply the truth of the larger property.  The process for 
factoring system level properties is shown in Figure 8. 
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Figure 8: Factoring System-Level Properties 

 
This process is fairly straightforward, but requires some creativity when splitting the 
property into parts that can be analyzed on the analysis subsystems.  Furthermore, it is the 
responsibility of the analyst to manually prove whether these subsystem properties entail 
the system-wide property.   
 
For example, requirement #3 states that the cursor will not be displayed on a display unit 
that is unavailable.  Formally, this is expressed:  

 
AG( !LEFT_DU_AVAILABLE -> CURSOR_LOCATION != LEFT_DU ) 
 
AG( !RIGHT_DU_AVAILABLE -> CURSOR_LOCATION != RIGHT_DU ) 

 
We will examine the left side property; since the system is symmetric, this also proves 
the property for the right side.  The property cannot be checked by examining the 
application placement subsystem as it does not describe the cursor location, and also 
cannot be checked by the cursor placement subsystem, since it does not contain inputs 
determining DU availability.  However, it is possible to determine the validity of the 
property by examining the properties for requirements two and four.   
 
Given the validity of subsystem properties two and four: 
 

AG( !LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION = BLANK )         (Req. 2) 
AG( LEFT_DU_APPLICATION != MAP -> CURSOR_LOCATION != LEFT_DU))  (Req 4.) 

 
and an additional (trivial) property: 

SPEC AG( LEFT_DU_APPLICATION = BLANK  -> LEFT_DU_APPLICATION != MAP ) 
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we can immediately determine  

AG( !LEFT_DU_AVAILABLE -> CURSOR_LOCATION != LEFT_DU ) 
 

The case for the right side property is symmetric. 

3.2.5. Determine System Invariants on Subsystem Inputs 
It is often not possible to verify interesting safety properties on a large model in a 
completely unconstrained environment.  Instead, the correctness of the controller depends 
on certain environmental assumptions about its environment.  As part of the analysis 
process, we examine the environmental assumptions in the requirements document to 
create constraints on the possible values of inputs into the system.  The constraints on 
inputs are specified as invariants in NuSMV, which restrict the states that will be visited 
during the model checking process.  In this step, we determine and formalize the 
applicable environmental assumptions for each subsystem as NuSMV invariants.  For 
reasons that are explained in the following two paragraphs, we initially use these 
invariants as tools to explain counterexamples rather than to restrict analysis, and we 
leave them commented out. 
 
Although invariants are necessary to prove “interesting” properties over subsystems, they 
are also dangerous to the soundness and applicability of the analysis.  If conflicting 
invariants are specified, then there are no states that satisfy the invariants, so all 
properties are trivially true.  Similarly, if invariants restrict the set of allowed inputs so 
that it is a subset of the possible inputs to the real system, then our analysis will be 
incomplete.  Finally, just because constraints are specified in the requirements document 
does not mean that other systems will actually obey these constraints.   
 
Therefore, although we formalize the invariants in this step we do not use them in our 
initial model checking analysis.  If the initial subsystem analyses return counterexamples, 
we analyze the counterexamples to see whether they are due to violations of our 
invariants or due to incorrect behavior within the model.  Even if counterexamples are 
due to invariant violations, we prefer to strengthen the model behavior, when possible, to 
deal with abnormal environments rather than use system invariants.  If it is determined 
that there is no good way to handle abnormal environments within the model, then we 
finally begin to use the invariants derived from the environmental assumptions. 
 

3.3. Reducing State: Scaling, Abstraction, and Refactoring 
The primary limiting factor when using the model checker is the size of the state space.  
In this section, we describe strategies to reduce the size of model state spaces that were 
used in the WM analysis. 

3.3.1. Replacing Reals with Integers 
Our current model-checking tools are unable to reason about real numbers. Fortunately, 
real-valued variables are not used in a substantive way for the WM application, and we 
have developed simple techniques to replace reals with integer subranges.     
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We have used a simplified version of domain reduction abstraction [8], which attempts to 
reduce the domain of some variable while preserving the interesting traces, i.e., the ones 
that can lead to a counterexample, of system behavior.  The idea is to preserve enough 
values such that all conditions involving real numbers will be completely exercised.   
 
In the WM, real numbers are only used in addition and subtraction by constants and 
comparisons between real-valued variables and constants.  Therefore, it is very 
straightforward to preserve the behavior of these variables using a scaled range of 
integers.  The range of the integer is determined by examining all of the relational 
comparisons and arithmetic operations in the model and the formal properties that 
involve the variable.  For example, one real-valued variable in the “full” WM is the 
vertical position of the cursor on a display, so that when the cursor is transferred to 
another display, it is at the same vertical position.  However, this position is never 
changed by the WM, and is only used to notify the “new” display when a cursor transfer 
occurs.  Therefore, we can effectively replace the real number with a constant integer. 
 

3.3.2. Scaling Integer Ranges 
In order to efficiently model-check a specification, we would like to determine the 
minimal range necessary to represent the behavior of each variable in the model.  This is 
because the performance of BDD-based model checkers is directly correlated to the 
ranges of the variables in the model.  The SMV translation tools currently allow the user 
to specify the default range of all integer variables within the model, which allow a gross 
level of control over ranges.  
 
However, when models become large, fine-tuning the integer subranges on a variable-by-
variable can have a dramatic impact on model-checking performance.  Currently, this is 
done manually by editing the generated SMV model. In the future, we plan to add 
support for automatically deriving bounds for variables within the model to the 
translation tools. 
 

3.3.3. Refactoring Simulink Models 
Design choices that lead to code-bloat or poorly cohesive systems also affect the 
performance of the model checker.  A rule of thumb is that the larger the number of 
blocks within a model, the longer it will require to analyze.  Therefore, model re-
factoring is not only a useful design activity, but often necessary to successfully analyze 
large subsystem models.   
 
In our experience, we have re-factored WM models in which some piece of functionality 
(e.g., display application placement) is replicated (e.g., left-side and right-side display 
application placement) by “copy and paste reuse”.  By properly packaging the 
functionality into subsystems, we can split the analysis task into independent parts, 
leading to much faster analysis.   
 
Similarly, when creating the analysis models, it is possible to indirectly analyze 
subsystem coupling by examining the complexity of subsystem invariants between the 
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outputs of one subsystem and the inputs of another subsystem.  If complex invariants are 
required to prove properties about a subsystem, then it is likely the case that the 
subsystem is tightly coupled to the subsystem that generates the outputs.  These cases 
should be examined to determine if it is possible to refactor the design to simplify the 
analysis invariants. 
 
 

3.4. Analyzing Subsystems 
The next phase is to iteratively analyze the subsystems created from splitting up the 
system Simulink model.  An overview of this process is shown in Figure 9.   
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Figure 9: Subsystem Analysis Process 

 
The process consists of several stages.  First, we run the RCI-UMN translators to 
translate the Simulink model into NuSMV syntax and merge in the properties and 
environmental assumptions for the subsystem.  If no counterexamples are discovered, 
then the analysis is complete.  Otherwise, we analyze the counterexample to determine 
how to fix the problem. 
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3.4.1. Running RCI/UMN Translators and NuSMV 
The first step in the analysis process is to run the RCI-UMN translators and NuSMV.  In 
order to facilitate this process, we have created a simple Java program to automate parts 
of the process shown in Figure 10. 
   

Subsystem
Simulink
Models

Subsystem
Simulink
Models

RCI/UMN Translators

Properties 
Prove?

Subsystem
Satisfies

requirements

Yes

No

Counterexample
(NuSMV output)

Counterexample
(NuSMV output)

Counterexample:
Formatted MS 

Excel Worksheet

Counterexample:
Formatted MS 

Excel Worksheet

Counterexample:
Reactis Test 

Suite

Counterexample:
Reactis Test 

Suite

Counterexample:
SCADE input 

script

Counterexample:
SCADE input 

script

Model Check 
Specification

NuSMV
Specification 

with CTL 
Properties

NuSMV
Specification 

with CTL 
Properties

 
Figure 10 : RCI/UMN translator functionality 

    
The heart of this automated process includes testing the specification, dumping NuSMV’s 
raw output to a simple text file, and running the RCI/UMN suite of translation 
applications to achieve the desired format for interpretation.      

3.4.2. Interpreting Counterexamples 
For sufficiently large systems, determining the root cause of counterexamples by 
examining the model checker output can be difficult and time consuming.  We have 
created automated tools to translate NuSMV counterexamples into the input language for 
the SCADE and Reactis Simulink simulators (Figure 10).  This capability allows us to 
step forward through the test case and examine the values of internal variables in the 
model.  Reactis and SCADE both have strong simulation capabilities allowing an analyst 
to forward/back step through a counterexample and easily descend through different 
subsystems within a Simulink model.  We have found this capability invaluable when 
trying to understand and fix complex counterexamples.   

3.4.3. Fixing a Problem Identified by a Counterexample 
When a counterexample is discovered, it is classified by its underlying cause.  The cause 
may be one or more of the following: 
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• Modeling error 
• Property formalization error 
• Incorrect/missing invariants for the subsystem 
• High-Level requirements error 

 
The process of determining the cause of the fault is somewhat an effort in consensus 
building given the requirement, the formal property, the model, and the counterexample.  
We illustrate in the next section with a small model derived from our toy window 
manager. 

3.4.4. Example: The CURSOR_PLACEMENT Subsystem. 
We will illustrate the subsystem analysis process with the CURSOR_PLACEMENT 
subsystem defined in 4.4.2.  This subsystem is responsible for ensuring that the cursor is 
placed on a display that can support it.  The model consists of two subsystems and is 
shown in Figure 1. The first subsystem, CURSOR_LOCATION_AVAILABILITY, 
outputs whether or not the left/right DU application is equal to MAP.  Recall that MAP is 
the DU application that supports a cursor.  The CURSOR_LOCATION_SELECTION 
subsystem determines where the cursor will be placed given availability of DUs and 
requests.   
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Figure 11: CURSOR_PLACEMENT Subsystem 

 
The CURSOR_LOCATION_SELECTION subsystem is shown in Figure 12. If no DUs 
are available, then the cursor is placed on NULL.  The logic for assignment is 
straightforward: The cursor is placed on a DU if the other DU is unavailable or if a 
request to that DU is made, provided that DU is available.   
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Figure 12: CURSOR_LOCATION_SELECTION subsystem 

 
There are two requirements and four properties allocated to the CURSOR_PLACEMENT 
subsystem, shown below. 
 
4. The cursor will not be 
displayed on a DU whose 
application is not MAP 

AG(LEFT_DU_APPLICATION != MAP -> CURSOR_LOCATION != LEFT_DU) 
 
AG(RIGHT_DU_APPLICATION != MAP -> CURSOR_LOCATION !=RIGHT_DU) 

5. When the MAP 
application is selected for 
a side, then the cursor will 

move to that side 

AG(LEFT_DU_APPLICATION != MAP -> AX( LEFT_DU_APPLICATION = 
MAP -> CURSOR_LOCATION = LEFT_DU ) ) 
 
AG(RIGHT_DU_APPLICATION != MAP -> AX( RIGHT_DU_APPLICATION = 
MAP -> CURSOR_LOCATION = RIGHT_DU ) ) 

 
The properties associated with requirement 4 prove immediately on the model that we 
presented.  However, both properties associated with requirement 5 fail.     
 
Examining a Counterexample: Model Error 
The translation tools allow counterexamples to be displayed in Microsoft Excel and also 
to be imported as test cases in Reactis and SCADE.  An example of the excel spreadsheet 
generated from the counterexamples is shown in Figure 13.   
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Figure 13: Excel Spreadsheet Generated for Counterexamples 

 
A counterexample is a test case that shows one way in which the property of interest is 
violated.  In the excel format, the violated properties are presented in the “requirements” 
section of the spreadsheet, and for each property, the counterexample associated with the 
property is presented below the property in the “tests” section.  In Figure 13, we have two 
counterexamples for the properties associated with Requirement 5.  Each step has four 
inputs and one output, matching the signature of the CURSOR_PLACEMENT 
subsystem.   
 
The first counterexample is three steps long, and describes a violation of the left-side 
property.  To explain the counterexample, we recall the ranges for Left/Right DU 
application and cursor location introduced in Section 3.1:  
 

• Left/Right DU Application: These outputs are enumerations: {0 = BLANK, 1 = 
EICAS, 2 = PFD, 3 = MAP} that describe what is to be displayed on a DU. 

• Cursor Location: This output is an enumeration {0 = No Cursor, 1 = Left DU, 2 
= Right DU} that describes the location of the display cursor. 

 
Now we observe that in the third step (Time = 3), the left DU application changes from 
EICAS to MAP but the cursor location is still Right_DU, violating the property. 
 
After a cursory examination of our model, we realize that we have no functionality to 
support requirement 5: there is no behavior that moves the cursor to a DU when MAP is 
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selected.  We add this functionality by treating a selection of the MAP application the 
same as a manual cursor request (recall that LEFT_DU_AVAILABLE is true only when 
LEFT_DU_APPLICATION is MAP) and update the model as shown in Figure 14.  
 

 
 

Figure 14: Fixed Cursor Manager Model 

 
Now, we can re-run the properties against the updated model.   
 
Examining a Counterexample: Requirements Deficiency 
When we re-run the model checker, all of the properties hold except the right-side case of 
Requirement 5: 
 

AG( RIGHT_DU_APPLICATION != MAP -> AX( RIGHT_DU_APPLICATION = MAP -> 
CURSOR_LOCATION = RIGHT_DU ) ) 

 
The counterexample is shown in Table 2.  From examining this table, we see that if a left 
manual request is received at the same time as the right DU application becomes map, 
then the left side will take precedence.   
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REQUIREMENTS 

 
AX AG (RIGHT_DU_APPLICATION != MAP -> AX 
(RIGHT_DU_APPLICATION = MAP -> CURSOR_LOCATION = RIGHT_DU)) 

TIMES  1 2 
    
INPUTS    
 LEFT_DU_APPLICATION 3 3 
 RIGHT_DU_APPLICATION 0 3 
 LEFT_MANUAL_REQUEST 0 1 
 RIGHT_MANUAL_REQUEST 0 0 
    
OUTPUTS    
 CURSOR_LOCATION 1 1 
    

Table 2 : Requirement #5 Counterexample  

 
In this case, we have found a deficiency in our requirements: what should occur if both 
sides choose the MAP application simultaneously?  Currently our requirements state that 
when MAP is selected for a DU, then the cursor will migrate to the DU where it was 
selected.  However, they do not state what should happen if both sides choose the MAP 
application simultaneously.   
 
There are several ways to resolve this issue; in our case, we choose the left side DU as 
the default DU in case of simultaneous requests.  To simplify our property, we also 
introduce two variables into the properties file: WHEN_LEFT_MAP and 
WHEN_RIGHT_MAP.  These variables are true in the instant when the left/right side 
DU changes to MAP, and false otherwise. 
 
5.  When the MAP application is 

selected for a DU, the cursor will 
move to that DU.  In case both 
sides are simultaneously selected, 
the left side DU will be chosen. 

AG( WHEN_LEFT_MAP  ->  
   CURSOR_LOCATION = LEFT_DU) 
 
AG((WHEN_RIGHT_MAP & !WHEN_LEFT_MAP) ->  
   CURSOR_LOCATION = RIGHT_DU ) 

 
After making these changes, all of the properties associated with the cursor placement 
subsystem succeed.   
 

4. Analysis Results on the WM Model 
In the previous sections, we examined in detail the verification of a toy Window Manger 
in order to illustrate how modeling can be applied to such systems. In this section, we 
discuss the formal verification of the actual ADGS-2100 Adaptive Display & Guidance 
System Window Manager. Of course, details of the WM design are highly proprietary 
and cannot be described in detail here.  However, it is possible to discuss the scope of the 
effort, what information is being collected, and the number and sorts of errors found to 
date. 
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4.1. Scope of the Effort 
The actual WM is much larger and more complex than the toy window manager 
described in Section 2.1.  It is also considered critical (DO178B Level A) to the operation 
of the aircraft.  We are currently verifying through model-checking approximately 90% 
of the functional behavior of the WM application (in terms of the number of Simulink 
blocks).   The remaining 10% of the model is in one subsystem that contains a significant 
number of real- and integer-valued variables.  This subsystem does not contain much 
mode-specific behavior and is not considered a likely source of design errors. For these 
reasons, we have not included it in our analysis. 
 
We currently have five analysis models that are used for analyzing the behavior of the 
window manager.  Table 3 provides an overview of the analysis results thus far. 
 

Subsystem Subsystem 
Instances Basic Blocks Reachable 

State Space Properties 
Confirmed 

Errors  
(To Date) 

GG 2,831 10,669 9.8 x 109 43 56 

PS 144 398 4.6 x 1023 152 10 

CM 139 1,009 1.2 x 1017 169 10 

DUF 879 2941 1.5 x 1037 115 8 

MFD 302 1,100 6.8 x 1031 84 14 

Totals 4295 16,117 n/a 563 98 

Table 3 : WM analysis data 

 
The first column is just the abbreviation for the subsystem.  The next two columns are 
designed to provide a feeling for the size of the Simulink models.  The Number of 
Subsystem Instances column describes the number of user-defined Simulink subsystem 
instances within the model.  This measure is distinct (and larger than) the number of 
different subsystem types, since each subsystem type may have several instances.  The 
number of basic blocks counts the number of basic Simulink operators used within the 
model.  The reachable state space is the number of states the subsystem can visit during 
execution.  The final two columns are the number of properties defined for each model 
and the number of confirmed errors found. 

4.2. Information Collected 
As errors are detected, they are each logged in a problem report and tagged with the 
following information: 

• Date of discovery 
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• The individual that found it 
• Subystem the error was found in 
• Brief description 
• How it was found 
• Proposed and actual resolution.  

 
Errors are not only found through model checking. Sometimes, simply reading the 
requirements prior to modeling reveals errors. These errors are classified as being found 
through “Inspection”. Other errors are found while creating the Simulink model. These 
were classified as being found through “Modeling”. The complete list of methods by 
which errors are detected is given in Table 4. 
 

Classification Description 
Inspection Error found by manual review or inspection of the 

specification. 
Modeling Error found during the process of creating the Simulink 

model. 
Simulation Error found while executing the Simulink model. 
Analysis Error found through model checking or other analysis of the 

Simulink model. 

Table 4 - Classifications of Error Detection 
 
The other obviously desirable classification is some notion of the importance, or severity, 
of the error. However, this is quite difficult to do in an objective way. For example, is an 
error in following documentation standards that requires thousands of hours to correct a 
trivial or major error? Is a coding error that could violate a system safety property, but is 
found in the first code review and requires only one line of code to be changed, a trivial 
or a major error?  Unlike the effort in [24], we have decided not to try to classify the 
errors discovered in the WM verification effort. 

4.3. Analysis Process 
 
During the lifetime of the project, the analysis process underwent significant changes 
from the previous analysis effort described in [24].  In that effort, the translation process 
was performed by researchers utilizing the Simulink gateway of SCADE to translate into 
NuSMV.  Feedback was provided to the development group by meeting on a semi-
weekly basis to discuss problems found. 
 
In this project, the process has evolved to where all the analysis is now being done by the 
project engineers.  This evolution is outlined in Figure 15.   The first iteration involved 
using SCADE as an intermediate tool to convert between Simulink and our analysis tools.  
This conversion process required a significant amount of effort because Simulink 
Gateway provided in the SCADE toolset did yet not support the direct translation of 
Simulink R14 models.  Instead, we would convert R14 models into R13, which could 
then be imported into SCADE.  Furthermore, SCADE usually required manual 
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annotations to models in order to successfully import them.  This conversion process 
required a significant amount of expertise.   
 
To address the difficulties in importing Simulink R14 models through SCADE, Rockwell 
Collins and the University of Minnesota developed a Reactis to Lustre translator.  Reactis 
supports Simulink R14 and a richer subset of Simulink blocks than SCADE, and fits 
better into the existing development environment used by product engineers.  By 
coincidence, the intermediate (MWI) representation of Simulink models used by Reactis 
is very similar to Lustre, so the translation to Lustre was very straightforward. 
 
Moving from SCADE to the Reactis to Lustre translator resulted an immediate 
improvement in the round-trip analysis time, as it was possible to directly import 
Simulink R14 models into our tools.  However, our round-trip time was still limited by 
whether or not researchers were available to run the tools and explain counterexamples.   
  

Translation Time: 1-4 Hours
Turnaround: 1 Day to 1 Week 

Iteration 1

Simulink 
R14 Model

Simulink 
R13 Model

SCADE 
Model

NuSMV
Model

Translation Time: 10 Minutes
Turnaround: 3 Hours to 2 Days

Iteration 2

Simulink 
R14 Model

Reactis
Model

NuSMV
Model

Translation Time: 10 Minutes
Turnaround: 10 Minutes

Iteration 3

Simulink 
R14 Model

Reactis
Model

NuSMV
Model

Research 
Group 

(Striped)

Dev. 
Group
(Solid)

 
Figure 15 : Analysis process evolution 

 
The third iteration introduced the most significant milestone in usage of the technology to 
date.  At this time, system developers were trained in the usage of the translation toolset, 
specifying properties, and interpreting counterexamples.  The time from error detection to 
implementation of a correction was reduced from days to minutes.  Previously, delays in 
the process were due to inability for groups to meet regularly.  In Iteration 3, the delays 
are largely due to the time it takes to discover root causes of counterexamples, and to 
suggest and implement fixes.  This effectively changed the role of researchers from 
primary analysts to consultants and allowed the product area teams to use the tools in a 
tight-development loop. 
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4.4. Causes of Errors Found 
Many errors were discovered during analysis.  Most of these errors can be attributed to 
several common causes.  A discussion of a few of the more prevalent causes follows. 
 
The most common type cause of error is the improper use of the rising edge detector 
block (shown in Figure 16).  The function of this block is to detect when a signal goes 
from FALSE to TRUE. 

 
Figure 16 : Rising edge detector to detect emergency 

Figure 16 illustrates a situation where the improper use of the rising edge block can lead 
to undesired system states.  Suppose the EMERGENCY condition input becomes TRUE.  When 
it becomes TRUE, the CHANGE_STATE output is activated.  Now suppose the CHANGE_STATE 
output is lost or not seen during transmission in the system and subsequently not 
processed.  A situation now exists where the EMERGENCY condition is still TRUE, but the 
CHANGE_STATE input will not be issued again until the EMERGENCY condition is cleared and 
re-entered.  This could lead to hazardous situations and should be avoided. 
 
Another common cause of error is the lack of requirements to address the occurrence of 
multiple events.  Some requirements in the system are stated, “When the MODE_X 
button is pressed, MODE_X will become active.”  This requirement does nothing to 
address the situations when more than one button is pressed with the MODE_X button.  
Which mode becomes active when the MODE_X button and others are pressed?  These 
concerns are often not addressed in the written requirements. 
 
A third common source of error involves copy/paste reuse errors where a portion of a 
diagram is copied into another subsystem and modified to fit the requirements of the new 
subsystem.  In this instance, a single error within the original subsystem can be 
propagated to several locations leading to many property violations and counterexamples.  
Similarly, violations often occur if the copied diagram does not precisely match the 
requirements of the new context.  Our experience reinforces that this kind of “reuse” 
must be done with care.   
 
The last common cause of error, although trivial, is incorrect connection of inputs from 
subsystem to subsystem.  In large systems, such as the window manager, the connection 
of inputs can become quite confusing, and errors can be made.  Signals must often be 
routed through several subsystem layers to reach the subsystem where they contribute to 
the behavior of the model, and each of these layers may be large and complex, so these 
errors can be difficult to find using only inspections.  However, the model-checker can 
quickly find these errors. 
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5. Conclusions and Directions for Future Work 
 
This report described the large-scale use of formal methods to verify the behavior of 
production avionics software.  In this effort, we verified the correctness of the majority of 
the functional behavior of the ADGS-2100 window manager, analyzing over 16,000 
primitive Simulink blocks organized into 4,000 Simulink subsystem instances, against 
high-level requirements expressed as 563 temporal logic properties. As a result, 98 errors 
in the high-level requirements and Simulink models were found and corrected.  This 
effort provides a significant example of a successful and cost-efficient application of 
formal methods to remove defects early in the design cycle. 
 
Our success was predicated on understanding the needs and development processes of the 
systems and software engineers who were building the WM application.  We identified 
several challenges that had to be solved in order to meet these needs: 

• Determining how to map software requirements into formal properties 

• Creating translators that would allow commercial modeling tools (such as 
Simulink [10]) to be quickly and automatically analyzed by different formal 
analysis tools 

• Creating tools that allow analysis results (counterexamples) to be easily 
understood by the analysts and product engineers 

• Defining methods for partitioning the application of interest into subsystems that 
can be analyzed individually 

• Creating a verification process to ensure that: 1) the analysis results are sound, 2) 
all formal properties are traceable to software requirements, and 3) all 
requirements of interest are verified through one or more formal properties 

• Iterating our verification process with the goal of faster turn-around between 
development and analysis to create a more efficient and higher quality process. 

By addressing these challenges, we achieved significant buy-in from the WM developers, 
and by the end of the project they had assumed responsibility for analyzing the models 
and ownership of the safety properties.   
 
Our approach was an extension of the one detailed in [24].  In this effort we focused on 
improving the scalability and turnaround time of analysis and the usability of the tools.  
The most significant step was the introduction of the new translation path from the 
Reactive Systems tool, Reactis, directly to the Lustre specification language.  This 
contributed considerably to the improvement in time required to correct errors, and cost 
reduction.  
 
In the future, we will focus on extending the current technology to include analysis of 
systems with real variables and large-domain integers.  Although our existing tools have 
been very effective in analyzing Boolean and enumerated models, we would like the 
capability to be able better address flight-critical systems in which real- and integer-
valued variables play a critical role.  We are continuing to add support for a larger 
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number of Simulink blocks, and plan to support StateFlow [23], a sub-language for 
specifying control logic built into Simulink, in the near future.  
 
We also plan to improve several user interface and ease-of-use issues in the current 
toolset.  One of the most cumbersome steps in the current process involves specifying 
and tweaking the valid ranges for integer variables within models.  For integer variables 
being used as enumerations, the valid ranges of a variable can be derived from the 
assignment equation for the variable in the the model.  This step would significantly 
reduce the set-up time necessary to prepare a model for analysis.  
 
Our eventual goal is to see formal analysis tools used as part of development in the same 
way as a compiler or simulation tool. At the end of this project, a developer could 
translate an analysis model through our tool chain and analyze it in a matter of minutes.  
This quick turnaround allowed developers to integrate model checking into their standard 
“build a little, test a little” development cycle.  Although our current tool suite does not 
yet match our ease-of-use goals, we are at a point where developers can quickly and 
easily check large models for critical safety properties, and we are actively working to 
improve the tool suite and our analysis process.  
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